高一数学必修三
一、 选择题
1. 从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,40 2. 给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x为某一实数时可使x0”是不可能事件 ③“明天顺德要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3
3. 下列各组事件中,不是互斥事件的是 ( ) A. 一个射手进行一次射击,命中环数大于8与命中环数小于6
B. 统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于分 C. 播种菜籽100粒,发芽90粒与发芽80粒 D. 检查某种产品,合格率高于70%与合格率为70% 4. 某住宅小区有居民2万户,从中随机抽取200户,调 查是否安装电话,调查的结果如表所示,则该小区已 安装电话的户数估计有 ( )
电话 已安装 未安装 动迁户 65 40 原住户 30 65 2
A. 6500户 B. 300户 C. 19000户 D. 9500户
5. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有 ( )
12.5,15.5 3;15.5,18.5 8;18.5,21.5 9;21.5,24.5 11;24.5,27.5 10; 27.5,30.5 6;30.5,33.5 3.
A. 94% B. 6% C. 88% D. 12% 6. 样本a1,a2,,a10的平均数为a,样本b1,,b10的平均数为b,则样本a1,b1,a2,b2,,a10,b10
的平均数为 ( ) A. ab B.
11ab C. 2ab D. ab 2107. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的
1,且样本容量为160,则中间一组有频数为 ( ) 4A. 32 B. 0.2 C. 40 D. 0.25
第 1 页 共 15 页
8. 袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( ) A.
324 B. C. D. 非以上答案
55159. 在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为 ( ) A.
1111 B. C. D. 3691210.以A2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是 ( ) A.
5535 B. C. D.
28131414二、填空题
11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为____________.
12.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有1个红球的概率是___________.
13.有5条长度分别为1,3,5,7,9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是___________.
14.用辗转相除法求出153和119的最大公约数是______________.
三、解答题
15.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知PA0.7,PB0.1,PC0.05,求下列事件的概率:⑴ 事件D=“抽到的是一等品或二等品”;⑵ 事件E=“抽到的是二等品或三等品”
16.一组数据按从小到大顺序排列,得到-1,0,4,x,7,14中位数为5,求这组数据的平均数和方差.
17.由经验得知,在大良天天商场付款处排队等候付款的人数及其概率如下图:
第 2 页 共 15 页
排队人数 概率 5人及以下 6 0.1 0.16 7 0.3 8 0.3 9 0.1 10人及以上 0.04 求:⑴ 至多6个人排队的概率;⑵ 至少8个人排队的概率.
18.为了测试某批灯光的使用寿命,从中抽取了20个灯泡进行试验,记录如下:(以小时为单位) 171、159、168、166、170、158、169、166、165、162 168、163、172、161、162、167、164、165、164、167
⑴ 列出样本频率分布表;⑵ 画出频率分布直方图;⑶ 从频率分布的直方图中,估计这些灯泡 的使用寿命。
19.五个学生的数学与物理成绩如下表:
第 3 页 共 15 页
学生 数学 物理 A 80 70 B 75 66 C 70 68 D 65 64 E 60 62 ⑴ 作出散点图和相关直线图;⑵ 求出回归方程.
20.铁路部门托运行李的收费方法如下:y是收费额(单位:元),x是行李重量(单位:㎏),当
0x20时,按0.35/㎏ 收费,当x20㎏ 时,20㎏的部分按0.35元/㎏,超出20㎏的部分,
则按0.65元/㎏收费.⑴ 请根据上述收费方法求出Y关于X的函数式;⑵画出流程图.
高一数学必修三总测题(B组)
第 4 页 共 15 页
班次 学号 姓名
一、选择题
1. 下面一段程序执行后输出结果是 ( ) 程序: A=2 A=A*2 A=A+6 PRINT A
A. 2 B. 8 C. 10 D. 18
2. ①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为 ( ) A. 分层抽样,分层抽样,简单随机抽样 B. 系统抽样,系统抽样,简单随机抽样 C. 分层抽样,简单随机抽样,简单随机抽样 D. 系统抽样,分层抽样,简单随机抽样 3. 某校为了了解学生的课外阅读情况,随机调查 了50名学生,得到他们在某一天各自的课外阅 读所用的时间数据,结果可以用右图中的条形 图表示,根据条形图可得这50名学生这一天平 均每人的课外阅读时间为 ( ) A. 0.6h B. 0.9h C. 1.0h D. 1.5h
4. 若角的终边上有一点Pa,a,aR且a0,则sin的值是 ( ) A. 222 B. C. D. 1 2225. 从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
卡片号码 取到的次数 1 13 2 8 3 5 4 7 5 6 6 13 7 18 8 10 9 11 10 9 取到号码为奇数的频率是 ( ) A. 0.53 B. 0.5 C. 0.47 D. 0.37
6. x1,x2,...,xn的平均数是x,方差是s,则另一组数3x12,3x22,...,3xn2的平均数和方差分别是 ( ) A. 3x,s2 B. 3x2,s2
2第 5 页 共 15 页
C. 3x2,3s2 D. 3x2,3s226s2
7. 如下图所示,程序执行后的输出结果为了 ( )
开始 n5 s0 nn1 no s15? yes ssn 输出n 第7题图 结束
A. -1 B. 0 C. 1 D. 2
8. 从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是( ) A.
1324 B. C. D.
55559. 下列对古典概型的说法中正确的个数是 ( ) ① 试验中所有可能出现的基本事件只有有限个; ② 每个事件出现的可能性相等;
③ 基本事件的总数为n,随机事件A包含k个基本事件,则PA④ 每个基本事件出现的可能性相等;
A. 1 B. 2 C. 3 D. 4
10.小强和小华两位同学约定下午在大良钟楼公园喷水池旁见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.如果小强是1:40分到达的,假设小华在1点到2点内到达,且小华在 1点到2点之间何时到达是等可能的,则他们会面的概率是 ( ) A.
k; n1111 B. C. D. 6324二、填空题
11.一个为30°,其终边按逆时针方向转三周得到的角的度数为___________.
第 6 页 共 15 页
若sin13,且tan0,那么cos的值是_____________.
32212.下列说法:
① 设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品; ② 做100次抛硬币的试验,有51次出现正面.因此出现正面的概率是0.51; ③ 随机事件A的概率是频率值,频率是概率的近似值; ④ 随机事件A的概率趋近于0,即P(A)→0,则A是不可能事件; ⑤ 抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是⑥ 随机事件的频率就是这个事件发生的概率; 其中正确的有___________________
13.在图的正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率
9; 50的值.如果撒了1000个芝麻,落在圆内的芝麻总数是776颗,那么
这次模拟中的估计值是_________.(精确到0.001) 14.设有以下两个程序:
程序(1) A=-6 程序(2) x=1/3 B=2 i=1 If A<0 then while i<3 A=-A x=1/(1+x) END if i=i+1 B=B^2 wend A=A+B print x C=A-2*B end A=A/C B=B*C+1 Print A,B,C
程序(1)的输出结果是______,________,_________. 程序(2)的输出结果是__________.
三、解答题
15.某次数学考试中,其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i)表示第i个学生的成绩,先逐个输入S(i)( i=1,2,…),然后从这些成绩中搜索出小于75的成绩.(注意:要求程序中必须含有循环结构)
第 7 页 共 15 页
16.对某种电子元件的使用寿命进行调查,抽样200个检验结果如表:
寿命(h) 个数 100,200 200,300 300,400 400,500 500,600 20 30 80 40 30 ⑴ 列出频率分布表;⑵ 画出频率分布直方图以及频率分布折线图;⑶ 估计电子元件寿命在100h~400h以内的频率;⑷ 估计电子元件寿命在400h以上的频率.
17.假设有5个条件类似的女孩,把她们分别记为A,C,J,K,S.她们应聘秘书工作,但只有3个秘书职位.因此5人中仅仅有3人被录用,如果这5个人被录用的机会均等,分别求下列事件的概率:
第 8 页 共 15 页
⑴ 女孩K得到一个职位;⑵ 女孩K和S各自得到一个职位;⑶ 女孩K或者S得到一个职位.
18.已知回归直线方程是:ybxa,其中b^xynxiii1nyxi1n2inx2,aybx.假设学生在高中时数
学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:
x y 122 87 131 94 126 92 111 87 125 90 136 96 118 83 113 84 115 79 112 84 ⑴试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001) ⑵若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?
19.(1)单位圆上的两个动点M,N,同时从点P(1,0)出发,沿圆周运动,M点按逆时针方向旋转,速度
第 9 页 共 15 页
为
弧度/秒;N点按顺时针方向旋转,速度为弧度/秒,试求他们出发后第三次相遇时所用63的时间以及各自所走的弧度数.
(2)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面0.5米.风车圆周上一点A从最低点O开始,运动t秒后与地面的距离为h米.以O为原点,过点O的圆的切线为x轴,建立直角坐标系.
① 假设O1O和O1A的夹角为,求关于t的关系式; ② 当t=4秒时,求扇形OO1A的面积SOO1A; ③ 求函数h=f(t)的关系式.
数学必修三总测题A组
0 x y 第 10 页 共 15 页
一、选择题
1.B 2.D 3.B 4.D 5. C 6.B 7.A 8.C 9.C 10.D 二、填空题 11. 0.32 12. 三、解答题
15.解:⑴PDPA⑵PE=PB143 13. 14. 17 1510BPAPB=0.7+0.1=0.8
CPBPC=0.1+0.05=0.15
16.解:1.排列式:-1,0,4,x,7,14 ∵中位数是5,且有偶数个数 ∴
4x5 ∴x6 2 ∴这组数为-1,0,4,6,7,14 ∴ x5
17.解:⑴P0.10.160.26 ⑵P0.30.10.040.44
18.解:(1) (2)
频率/组距 频数 5 9 6 频率 0.25 0.45 0.3 小时 0.09 0.06 0.05 158,163 163,168 168,168 19.解: 158 163 168 173 物理 (1) (2)
70
60 70 80 数学 60 ˆ0.36x40.8 y第 11 页 共 15 页
0.35x0x2020.解:y
0.35*200.65x20x20程序如下:
INPUT “请输入行李的重量”;x IF x>20 THEN
y=0.35*200.65*x20 ELSE y=0.35*x END IF
PRINT “金额为”;y END
数学必修三总测题B组
第 12 页 共 15 页
一.选择题1.C 2.D 3.B 4.C 5. A 6.C 7.B 8.A 9.C 10.D 二、填空题 11. 422 12. ③、⑤ 13. 3.104 14. (1)5、 9、 2;(2)
3三、解答题15.
开始 i1Y i9 N 输入Si ii1 i1 i9 N Si75 Y 输出Si ii1 结束
16.解:(1)
(2) 第 13 页 共 15 页
7
略
区间 频数 20 30 80 40 30 频率 0.1 0.15 0.4 0.2 0.15 频率/组距 0.001 0.0015 0.004 0.002 0.0015 100,200 200,300 300,400 400,500 500,600 (3)P100h,400h=0.65 (4)P400h,600h=0.35 17.解:总数: (1) Pk534=10 233639 (2) Pk和s (3) Pk或s
1010510ˆ0.538x22.521 18.解:(1)y (2)数学成绩:
930.538x22.521 x131
19.(1)解:设t秒中后第三次相遇.则
t32 63 t12
6122,3124
19.(2)解:(1)360°÷12=30° ∴30/t
(2)当t4,30t304120
120R244.189㎡ S3603(3)02 h2.52cos
第 14 页 共 15 页
h2.52sin 2233 h2.52sin 2232 h2.52cos2 2h2.52cos
∴hft2.52cos6t第 15 页 共 15 页
因篇幅问题不能全部显示,请点此查看更多更全内容