您的当前位置:首页正文

love sotries can be unpredicable

2024-08-15 来源:易榕旅网
Love stories can be unpredictable: Jules et Jim in the vortex of life

Fabio Dercole and Sergio Rinaldi

Citation: Chaos 24, 023134 (2014); doi: 10.1063/1.4882685 View online: http://dx.doi.org/10.1063/1.4882685

View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/24/2?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Dynamical stability of global vortex strings

J. Math. Phys. 52, 102302 (2011); 10.1063/1.3652696

Twisted vortex filaments in the three-dimensional complex Ginzburg–Landau equation Chaos 18, 026103 (2008); 10.1063/1.2940439

Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaoticitinerancy?

Chaos 13, 1110 (2003); 10.1063/1.1604251

Chirality dependent component of vortex advection in excitable media Chaos 9, 238 (1999); 10.1063/1.166396

Controlling symmetric vortex configurations

AIP Conf. Proc. 411, 109 (1997); 10.1063/1.54179

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

CHAOS24,023134(2014)

Lovestoriescanbeunpredictable:JulesetJiminthevortexoflife

FabioDercolea)andSergioRinaldib)DepartmentofElectronics,Information,andBioengineering,PolitecnicodiMilano,MilanoI3,Italy

(Received30September2013;accepted28May2014;publishedonline17June2014)

Lovestoriesaredynamicprocessesthatbegin,develop,andoftenstayforarelativelylongtimeinastationaryorfluctuatingregime,beforepossiblyfading.Althoughtheyare,undoubtedly,themostimportantdynamicprocessinourlife,theyhaveonlyrecentlybeencastintheformalframeofdynamicalsystemstheory.Inparticular,whyitissodifficulttopredicttheevolutionofsentimentalrelationshipscontinuestobelargelyunexplained.Acommonreasonforthisisthatlovestoriesreflecttheturbulenceofthesurroundingsocialenvironment.Butwecanalsoimaginethattheinterplayofthecharactersinvolvedcontributestomakethestoryunpredictable—thatis,chaotic.Inotherwords,weconjecturethatsentimentalchaoscanhavearelevantendogenousorigin.Tosupportthisintriguingconjecture,wemimicarealandwell-documentedlovestorywithamathematicalmodelinwhichtheenvironmentiskeptconstant,andshowthatthemodelischaotic.ThecaseweanalyzeisthetriangledescribedinJulesetJim,anautobiographicnovelbyHenri-PierreRoch󰀂ethatbecamefamousworldwideafterthesuccessofthehomonymousfilm

C2014AIPPublishingLLC.[http://dx.doi.org/10.1063/1.4882685]directedbyFranc¸oisTruffaut.V

Althoughhuntingforchaosisnotaspopularasitusedto

be,wededicatethispapertothepresentationofanewstrangeattractor.Itconcernsthemostimportantdynamicprocessinourlife—theevolutionofloveininterpersonalrelationships.1–4Moreprecisely,wesup-porttheconjecturethatromanticrelationshipscanbeunpredictable—technicallychaotic—onthesolebasisoftheinterplayofthecharactersinvolved.Thiscannotbedonewithoutamathematicalmodel,becauselovestoriesare,ingeneral,influencedbytheturbulenceofthesur-roundingsocialenvironmentandfartooshorttoallowthereconstructionofastrangeattractor.5Thefirstallu-siontotheconjecturewasmadebyStrogatz,2whomen-tionedthe“many-bodyproblem”whenpresentinghisadmittedlyrudimentarymodelofRomeoandJuliet.AmoretechnicalhintcanbefoundinapaperbySprott,6whereana€ıveextensionofStrogatz’smodeltothecaseofahypotheticaltriangleisdiscussed.Togiveacrediblesupporttotheconjecture,wefocusonarealandwell-documentedtriangularlovestory,weidentifyfromitthemainpsycho-physicaltraitsofthethreeindividuals,andweencapsulatetheminamathematicalmodelwithcon-stantenvironment.Wethenshowthatforreasonableval-uesoftheindividualtraitsthemodelcomparesfavorablywiththelovestoryandischaotic.

permanent(stationaryorfluctuating)regime,whileothers4,11focusonthephaseofmaritaldissolution.Moreover,mathe-maticalmodelshavealsobeendevelopedforafewspecific(thoughrelativelysimple)lovestories,describedintheliter-atureorinfilms.12–15Bymentioningtheanalogywiththe“many-bodyproblem”ofcelestialmechanics,Strogatz2somehowconjecturedthat

sentimentalrelationshipscanbeunpredictable—thatis,chaotic—onthesolebasisoftheinterplayofthecharactersinvolved.

Inotherwords,theconjectureisthatsentimentalchaoscanhavearelevantendogenouscomponent,andnotsimplyreflecttheturbulenceofthesurroundingsocialenvironment.Aproofofthisconjecturecanonlybebasedonamathemati-calmodel.Infact,theinteractionswithotherindividuals,aswellashealth,cultural,andeconomiccircumstances,makedifficulttoidentifytheoriginofthesentimentalturbulence.Andthoughnonlineartimeseriesanalysiscaninprinciplehelpinsolvingtheproblem,lovestoriesaretooshorttoallowthereconstructionofastrangeattractor.5Instead,bymeansofamathematicalmodelwithconstantparameters,onecaneasilycutalltheinteractionswithotherindividualsandkeeptheenvironmentconstant.

Ana€ıvesupporttotheaboveconjecturecanbefoundinanextensionofStrogatz’smodeltoahypotheticaltriangle.6However,acrediblesupportcanonlybegivenbymodelingarealandwell-documentedlovestory.Thisistheaimofthisstudy.

Thestartingpoint—theselectionofthelovestory—israthercritical.Indeed,thestorymust

–beknownworldwide,ifwewantourmessagetoreachthelargepublic;

–containsymptomsofturbulenceandunpredictability,topossiblysupportourconjecture;

–containafew,atleastqualitative,informationtoallowthevalidationofthemodel.

C2014AIPPublishingLLCV

I.INTRODUCTION

AfterStrogatz’s[1988]pioneeringpaper,2lovestories

havebeenmodeledwithincreasingsuccessintermsofdif-ferentialordifferenceequations.Manyattempts3,7–10describeanonymousstoriesfromthestateofindifference,inwhichwearewhenwefirstmeet,totheestablishmentofa

a)Authortowhomcorrespondenceshouldbeaddressed.Electronicmail:fabio.dercole@polimi.it.b)Alsoat:EvolutionandEcologyProgram,IIASA,LaxenburgA-2361,Austria.

1054-1500/2014/24(2)/023134/9/$30.00

24,023134-1

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-2F.DercoleandS.RinaldiChaos24,023134(2014)

Undertheaboveconstraints,ourchoicehasbeenthetriangularlovestorydescribedbyRoch󰀂einhis1953autobio-16graphicnovelJulesetJim.ThestorybeginsinParisafewyearsbeforetheFirstWorldWar,whereitends20yearslater.ItinvolvesKathe,herhusbandJules,andhisbestfriendJim(HelenGrund,FranzHessel,andHenri-PierreRoch󰀂einthereallife).

Roch󰀂e’snovelisknownbecauseitisconsideredasoneofthemaincontributionsconveyingtheanti-bourgeoisideologyof“freelove”thatcanbecondensedinsayingthat“oneshouldnotconstrainthepeopleoneloves,butleavethemfreetoengageinotherrelationships.”ThiscentralideaofRoch󰀂e’sphi-losophybecameverypopularintheseventiesandwaslaterextensivelydebatedinliteraryessays.ButthelovestoryofJulesetJimbecamefamousworldwideafterthesuccessofthe1961homonymousfilm—acelebratedmasterpieceoftheFrenchNouvelleVaguedirectedbyFranc¸oisTruffaut.

Asforthesymptomsofturbulenceandunpredictability,thereadingofthenovelgivestheimpressionthatKatheisquiteunstableanddifficulttopredict—shechangespartnerseventimesinthe20yearsofconcerns,alternatingbetweenJulesandJim.Actually,theuncertaintyoverthefuturecreatesinthetriangle(andinthereader)anincreasingten-sionthatceasesonlywhenKatheandJimcommitsuicide:

JuleswouldneverhaveagainthefearthathadbeenwithhimsincethedayhemetKate,firstthatshewoulddeceivehim—andthen,quitesimply,thatshewoulddie,forshehadnowdonethattoo(p.236intheEnglishtranslationofRoch󰀂e’snovel16)ThedramaticendimaginedbyRoch󰀂eishenceinter-pretableasapoeticwayofinterruptingthetortureduetoarecurrentshock—thechangeofpartner—thatbecomespar-ticularlyunsustainablebecauseunpredictable.Alsothefewavailabledataconfirmthatthepartnerchangesareirregular.

Thepaperisorganizedasfollows.InSec.II,weintroducethereadertothebasicnotionsweusetomodelsentimentalrelationships.3TheninSec.III,webuildourmodelofJulesetJim.First,wenotethatthelovestorybetweenKatheandanyoneofhertwoloversisscarcelyinfluencedbythepresenceoftheother.Thisisadirectconsequenceoftheprincipleoffreelovethatinspiresthelifeofthethreecharacters.Iftheywouldrigorouslyfollowthisprinciple,thenthetriangularrelationshipwouldbeequivalenttotwofullyseparatedpairwiserelation-ships.Inturn,thetrianglecouldbemodeledwithtwoindepend-entsubmodels,Kathe-JulesandKathe-Jim,respectively,describedinSecs.IIIAandIIIB.However,sincethethreecharactersslightlydeviatefromthepureideologyoffreelove,thetriangleisdescribedmorerealisticallyinSec.IIICbyweaklycouplingthetwosubmodels.Specifically,weintroducetwosmallparameterstotakeintoaccountthatKathedoesnotlivetwoindependentlovestoriesandthatJulesandJimareslightlycomplaisant,thefirst,andjealous,thesecond.AllourmodelingchoicesaresupportedbyliterarypassagesextractedfromRoch󰀂e’snovel.

InSec.IVA,wevalidateourmodelagainsttheinforma-tionavailableinthenovel,whichweidentifyinsevenspe-cificfeatures,includingthenumberandthechronologyof

thepartnerchanges.Sincetherearenoelementsinthenovelthatcouldsuggestreasonablevaluesforthecouplingparam-eters,weperformsystematicsimulationstocheckifthereisaregionintheplaneofthetwoparametersforwhichallfea-turesaresatisfactorilyreproducedbythemodel.Theresultofthisvalidationshowsthatthisregionischaracterizedbysmallandpositivevaluesofthecouplingparameters.

Finally,tosupportourconjecture,weshowinSec.IVBthatforthevalidatedvaluesofthecouplingparameters,themodeltrajectorydescribingthestoryofJulesetJimasymp-toticallyreachesachaoticattractor.Moreover,inlessthan20years,thetrajectoryreachestheattractorandspendsclosetoitatimeinwhichpredictionsbecomeimpracticableaccordingtothecomputed(largest)Lyapunovexponent.17AbroaderdiscussionofourresultsandafewgeneralconclusionsthatcanbedrawnfromthisstudyclosethepaperinSec.V.Sincetheresultsobtainedwithamodelbasedonsubjectiveinterpretationsarenotascredibleasthosebasedonprecisephysicallaws,thereaderisinvitedtochecktherobust-nessofourconclusionsbyinteractivelysimulatingourmodelusinganonlinesimulator(seesupplementarymaterial22),whereallmodelparameterscanbesignificantlychanged.

II.MATERIALANDMETHODS

Levinger1hasbeenthefirsttousegraphstorepresentthetimeevolutionofthefeelingsofonepersonforanother.FollowingLevinger’sabstraction,andalsotominimizethenumberofequations,weassumethattheinterestofoneper-sonforanothercanbecapturedbyasinglevariable,calledfeeling.Lowandhighpositivefeelingscorrespondtofriend-shipandlove,whilenegativefeelingsindicateantagonismandhate;zerocorrespondstoindifference.Forexample,inthepairwisestorydepictedinthetoppanelsofFig.1,shedevelopsfromtheverybeginningapositivefeelingforhim,whileheisinitiallyantagonistic.Incontrast,intheotherstory(bottompanels),sheandhearealwayspositivelyinvolved,butsufferfromremarkableupsanddowns.Ofcoursethegraphsstartfromthefeelingsthattheyhaveonefortheotheratthebeginningofthestory.Thus,thestartingpointistheoriginoftheplaneofthefeelingsifthetwoindi-vidualsareinitiallyindifferenttoeachother.

Feelingsvaryovertimebecauseoftheinterplayofcon-sumptionandregenerationmechanisms,hereconsideredastime-invariantprocesses.Thebasicconsumptionmechanismisoblivion.Itexplainswhyapersonloosesmemoryofthepartnerafterbeingabandoned.Theregenerationprocessestypicallyconsideredinminimalmodels3,7–10,12–15arethereactiontoloveandthereactiontoappeal—themixofbeauty,talent,wealth,andothertraitsthatareindependentoffeelings.

Consideracoupleanddenotebyx(t)andy(t)thefeelingsthatsheandhehaveonefortheotheratdayt.Amodelissim-plyabalanceofthefeelingsbetweenanydaytandthefollow-ingday(tþ1).Inwords,herfeelingtomorrowisequaltothatoftodayminusthelossofinterestbetweentodayandtomorrowduetooblivion,plustherechargeofinterest,againbetweentodayandtomorrow,duetoherreactionstohisloveandappeal.

ThelossofinterestduetooblivioncanbedescribedwithafunctionF(x)increasingwithx,toexpressthefact,

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-3F.DercoleandS.RinaldiChaos24,023134(2014)

FIG.1.Graphicalrepresentationoftwohypotheticallovestories.(Left)Feelings’timeseries.(Right)Trajectoriesintheplaneofthefeelings.

commoninnaturalsystems,thattherateatwhichagivenpropertyislostispositivelycorrelatedwiththeabundanceoftheproperty.Typically,thelossisassumedtobepropor-tionaltox,sothefunctionF(x)islinearandgivenbytheproductofaproportionalitycoefficientsfandx.Theparame-terf,calledforgettingcoefficient,representstheportionofinterestlostinonedaythroughoblivion.

Asfortherechargeofthefeeling,wedenotebyRL(y)herreactiontothepartner’slove(whereRstandsforreactionandLforlove)andbyRA(ay)herreactiontothepartner’sappeal,hereindicatedwithayandassumedtobeinvariant.AlsothereactionRA(ay)isassumedtobelinear,i.e.,RA(ay)¼rAay.

Tomodelthereactiontolove,wedistinguishbetweensecureindividuals—whoincreasetheirreactionforanyincreaseoftheloveofthepartner—andinsecureones—whoavoidhighinvolvementsbydecreasingtheirreaction(andpos-siblyreactnegatively)whentheloveofthepartnerisaboveacriticalthreshold.Secureindividualsarethereforecharacter-izedbyfunctionsRL(y)increasingwiththeloveyofthepart-ner(seeRef.3forasurvey).Amongthesefunctions,therearelinearfunctions,whichhowevercorrespondtoratherextremeindividualswithunboundedcapacityofrecharge.Incontrast,insecureindividualsarecharacterizedbyfunctionsRL(y)whicharedecreasingatsufficientlyhighvaluesofy(Fig.2,top).

Anotherimportantcharacteristicofanindividualisthepropensitytoreacttotheappealofthepartnerinabiasedway,dependingonher/hisownstateofinvolvement.Forexample,parentsoftenseetheirownchildrenmorebeautifulthantheyreallyare.Butthesamephenomenon,calledsyner-gism,hasalsobeenobservedinastudyofperceptionofphysicalattractiveness.18Inthiscase,thereactiontothepartner’sappealcanbewrittenintheform(1þS(x))RA(ay),wherethefunctionSisincreasingforpositivex(saturatingforlargex)andiszerofornegativex(Fig.2,bottom).Theoppositebehaviorisalsopossible,likeinplatonicindividu-alsdescribedbyareactiontoappealoftheform(1–P(x))RA(ay),wherePisshapedlikeSandmeasuresthelossofsexualinterestforincreasingvaluesoftheinvolvementx.

Individualswhoareneithersynergicnorplatonicarenotbiasedbytheirownfeelings.

III.THEMODELOFJULESETJIM

Inthissection,weproposeamathematicalmodelforthelovestoryofJulesetJimusingadidacticstylethatshouldmakethepaperaccessiblealsotonon-technicallyorientedreaders.Inparticular,wepresentthemodelasarulethatupdatesthefeelingsofKathe,Jules,andJimrecursivelyfromonedaytothenext.Anequivalentcontinuous-timefor-mulationofthemodelisalsopossible(intermsofordinarydifferentialequations).

Thelovestoryisreducedtoapuretriangleinaconstantenvironment.Specifically,weneglecttheinteractionsthat

FIG.2.(Top)Reactiontolovetypicalofaninsecureindividual.(Bottom)Typicalsynergismfunction.SeeTableIfortheanalyticalexpressions.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-4F.DercoleandS.RinaldiChaos24,023134(2014)

Kathe,Jules,andJimhavewithotherminorcharactersdescribedbyRoch󰀂e,andkeepallmodelparametersconstant.Sixvariables—thefeelingsofeachpersonfortheothers—areinprinciplerequiredinaminimalmodel.However,JulesandJimhaveadeepandpermanentfriendship:

IntwentyyearsJimandhehadneverquarrelled.Suchdisagreementsastheydidhavetheynotedindulgently(p.237)

Wethereforeconsideronlythefeelingsx1andx2ofKatheforJulesandJimandthefeelingsy1andy2ofthetwofriendsforher.

Thethreefollowalmosttoperfectiontheideologyoffreelove:

Inhermind,eachloverwasaseparateworld,andwhathappenedinoneworldwasnoconcernoftheothers(p.108)

ItseemsthusreasonabletosplitKatheintotwoinde-pendentwomen,oneinlovewithJulesandonewithJim,andtodescribethetrianglebymeansoftwoindependentsubmodelsofpairwiserelationship:theKathe-Julessubmo-del(Sec.IIIA)andtheKathe-Jimsubmodel(Sec.IIIB).

However,Roch󰀂edescribesspecificbehaviorsonthepartofthetwofriendsthatviolatetherigidprincipleoffreelove.JulesiscomplaisantwithJim—heispleasedwhenKatheiswithJimbecauseherealizesthismakesherhappier.Thischaracteristic,peculiartoJules,isconsistentwithhispla-tonicnature(seeSec.IIIA)andiswelldescribedbyRoch󰀂e:

‘…I’mterrifiedoflosingher,Ican’tbeartolether

gooutofmylife.Jim—loveher,marryher,andletmegoonseeingher.WhatImeanis,ifyouloveher,stopthinkingthatI’malwaysinyourway’(p.27)Althoughjealousyisatoddswiththeideologyoffreelove,JimisslightlyjealousofJules:

Shebestowedhergraciousnessoneachinturn…andJimwasjealous(p.97)

Thetriangleishencedescribedbycouplingthetwosub-modelsthroughsuitableparametersthatmeasurethesmalldevi-ationsofthethreecharactersfromtheprincipleoffreelove.

A.ThesubmodelKathe-Jules

Katheisapassionatewoman,andthoughcharmedbyJules,sheisatthesametimeannoyedbyhisplatonicnature:

Shehadbeendrawnbyhismind,hisgiftoffantasy.Butsheneeded,inadditiontoJules,amaleofherownsort(p.90)

Forthisreason,herreactionRLtoJules’loveisoftheinsecuretype(Fig.2,top).

Moreover,Katheisdefinitelyanenthusiasticperson,soherreactiontoJules’appealisamplifiedbythefactor(1þS),whereSisKathe’ssynergism(Fig.2,bottom).

Inconclusion,assumingthatKathe’sforgettingandreactiontoappealarelinear,herequationis

x1ðtþ1Þ¼x1ðtÞÀfx1ðtÞþRLðy1ðtÞÞþð1þSðx1ðtÞÞÞrAa1:

(2)

ThemodelofthecoupleKathe-Julesisthereforecom-posedofEqs.(1)and(2).ThemodelcanbeusedrepeatedlytocomputethetimeevolutionofthefeelingsofKatheandJules.Forthis,wemustfirstassignreasonablevaluestoallparame-ters,takingintoaccountallpossibleindicationspresentinthenovel.Forexample,wetakeKathe’sappealagreaterthanJules’onea1,becausesheis,byfar,morefascinatingthanhim.Similarly,weassumesheforgetsfasterthanhim,f>f1,beingthemoreunstableinthecouple.Ofcoursethespecificvalueswehaveselectedremainratherarbitraryandbasedonoursub-jectiveinterpretations.AllthedetailsaboutthefunctionsRL,S,andPandtheparametervaluescanbefoundinTablesIandII.

Now,assumingthatthedaytheymeetforthefirsttime,sayt¼0,KatheandJulesarecompletelyindifferentonetoeachother,wecanfixx1(0)¼y1(0)¼0andusethetwoequa-tionstocomputethevaluesofthetwofeelingsthenextday,thusobtainingx1(1)¼rAa1andy1(1)¼rA1a.Itisinterestingtonotethatonlyappealmattersatthebeginningofalovestory,sincefeelingsarestilllatent.Togoontothenextday,itissufficienttoincreasetimeofoneunitandusethesameequa-tionswrittenfort¼1tocomputethefeelingsatdayt¼2.Notethatalsotheforgettingfunctionsandthereactionstolovearenowinvolved.Repeatingthesameoperationsfort¼2,3,…,wecancomputethefeelingsofKatheandJulesatday3,4,…,andcontinuelikethisformonthsoryears.Theresultscanbeeasilyportrayedtoshowtheevolutionofthelovestoryinatimeintervalofinterest.InthiswayweobtainthegraphsinFig.3(top),wherethepointsindicatedwith1,2,and3repre-sentthefeelingsofKatheandJulesattheendofthefirst,sec-ond,andthirdyearoftheirrelationship.

KatheandJulesarealwayspositivelyinvolved,buttheirlovestorydoesnotreachaplateau.Indeed,astimegoeson,theirfeelingstendtooscillatewithaperiodofabout4years,moreprecisely3yearsand10months.Atthebeginningoftheirrelationship,KatheandJulesareincreasinglyinvolved,untilKathehasthefirstinversioninhertrend.Accordingtothemodel,theseinversionsarerecurrent.

B.ThesubmodelKathe-Jim

ThemainpeculiarityofJulesistobeplatonic:Really,Julesishappy,inhisownway,andjustwantsthingstogoon.He’sseeingyouoften,inidylliccircumstances,andhe’slivingonhope(p.24)

HethereforereduceshisreactiontoKathe’sappealwhenheismoreinlovewithher,i.e.,hisreactiontoappealisdampedbythefactor(1–P),wherePisJules’platonicity(shapedasinFig.2,bottom).

Inaccordancewithhisplatonicnature,Julesisasecurelover,andassuminglinearforgettingandreactionfunctions,theequationregulatinghisfeelingforKatheisthefollowing:y1ðtþ1Þ¼y1ðtÞÀf1y1ðtÞþr1x1ðtÞþð1ÀPðy1ðtÞÞÞrA1a:

(1)

ThemaincharacteristicofJimistobeinsecure,asall“DonJuan”aretoavoiddeepinvolvements:

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-5F.DercoleandS.RinaldiChaos24,023134(2014)

FIG.3.ThehypotheticallovestoriespredictedbytheKathe-Jules(top)andbytheKathe-Jim(bottom)submodels.

‘Oh,when,’shesaidtohimoneday,—‘whenareyougoingtostopgivingmebitsofyourselfandgivemeeverything?’(p.207)

Thus,hisreactionRL2toKathe’sloveisnonlinearandshapedasinFig.2(top).Assumingthathisforgettingandreactiontoappealarelinear,Jim’sequationisthen

y2ðtþ1Þ¼y2ðtÞÀf2y2ðtÞþRL2ðx2ðtÞÞþrA2a:

(3)

KatheissecureinherrelationshipwithJim(becauseheisnotplatonic)andsynergic.ThisisthereforeKathe’sequation,x2ðtþ1Þ¼x2ðtÞÀfx2ðtÞþrLy1ðtÞþð1þSðx2ðtÞÞÞrAa2;

(4)

whereSisagainKathe’ssynergism.

Inconclusion,themodelofthecoupleKathe-JimiscomposedofEqs.(3)and(4).Againparametersmustbefixedatreasonablevalues,e.g.,Jim’sappeala2smallerthanKathe’sone,thoughlargerthanJules’appeal—Jimbeingacharming“DonJuan;”andJim’sforgettingbeingfasterthanJules’one,f2>f1,inagreementwiththe“DonJuan”natureofJim(seeTableII).Onceallparametersarefixed,themodelcanberepeatedlyusedtocomputethetimeevolutionofthefeelingsofKatheandJim.TheresultisinFig.3(bot-tom).Inthiscasetoo,theinvolvementsofKatheandJimincreaseduringthefirstphaseoftheirrelationshipandthentendinafewyearstowardaswingingregimewithaperiodof3yearsand4months.Thistime,thefirsttoinvertthepositivetrendisJim,whobeinginsecurerefusestoodeepinvolvements.

C.Themodelofthetriangle

Toimplementthefirstchange,weassumethatKathe’sforgettingcapabilitiesdependuponherstateofinvolve-ment.Moreprecisely,weassumethatatanygiventimesheforgetslessquicklytheloversheismoreinvolvedwith.Thisisrealizedbymultiplying,inthetwoequationsforKathe(seebelow),herforgettingcoefficientfbyafac-torwhichisgreaterthan1inoneequationandsmallerthan1intheother.Inordertodeviateonlyslightlyfromthefree-loveprinciple,emustbeasmallpositiveparameter.

JulesdoesnotsufferwhenKatheismoreinlovewithJim.Actually,heispleasedbecauseheseesKathemorehappy.Asalreadysaid,thispeculiarcharacteristicisconsist-entwiththeplatonicnatureofJulesandiswelldescribedbyRoch󰀂e.InordertotakeJules’complaisanceintoaccount,hisreactiontoKathe’sloveisamplifiedbyafactorgreaterthan1whensheismoreinlovewithJim,namely,whenx2isgreaterthanx1(seeJules’equation).

InordertotakeJim’sjealousyintoaccount,hisreactiontoKathe’sloveisdumpedbyafactorsmallerthan1whensheismoreinlovewithJules,namely,whenx1isgreaterthanx2(seeJim’sequation).Forsimplicity,Jules’complai-sanceandJim’sjealousyarequantifiedbythesamepositiveparameterd,whichmustalsobesmallifweliketoavoidlargedeviationsfromthefree-loveprinciple.

Inconclusion,themodelofthetriangleiscomposedofthefollowingfourdifferenceequations:x1ðtþ1Þ¼x1ðtÞÀfexpðeðx2ðtÞÀx1ðtÞÞÞx1ðtÞ

þRLðy1ðtÞÞþð1þSðx1ðtÞÞÞrAa1;ðKatheforJulesÞ

x2ðtþ1Þ¼x2ðtÞÀfexpðeðx1ðtÞÀx2ðtÞÞÞx2ðtÞ

þrLy1ðtÞþð1þSðx2ðtÞÞÞrAa2;ðKatheforJimÞ

y1ðtþ1Þ¼y1ðtÞÀf1y1ðtÞþr1x1ðtÞexpðdðx2ðtÞÀx1ðtÞÞÞþð1ÀPðy1ðtÞÞÞrA1a;

y2ðtþ1Þ¼y2ðtÞÀf2y2ðtÞ

þRL2ðx2ðtÞÞexpðdðx2ðtÞÀx1ðtÞÞÞþrA2a;

ðJulesÞðJimÞ

Themodelofthetriangleisobtainedbyweaklycou-plingthetwosubmodelsKathe-JulesandKathe-Jim.Forthisweintroducethefollowingextra-characteristicsinthebehaviorsofthethreeindividuals:

–Kathedoesnotliveinfullyseparatedworlds;–JulesiscomplaisantwithJim;–JimisjealousofJules.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-6F.DercoleandS.RinaldiChaos24,023134(2014)

TABLEI.Nonlinearfunctions(specifiedfornonnegativefeelings).Character

Symbol

Expression

8>1Àððy1ÀsIÞ=yIÞ2>rI1þððy1ÀsIÞ=yIÞ21þy1=yL>>:1

8

2>>1þððxÀsSÞ=xSÞ2>>:08

2>>1þððy1ÀsPÞ=yPÞ2>>:08>1Àððx2ÀsI2Þ=xIÞ2>rI21þððx2ÀsI2Þ=xIÞ21þx2=xL>>:1

ify1!sIify1Jim’sreactiontoKathe’sloveJules’platonicityKathe’ssynergismDescription

KatheRL(y1)Kathe’sreactiontoJules’love

S(x)

JulesP(y1)

JimRL2(x2)

TABLEII.Modelparameters.CharacterKathe

ContextForgetting

ReactiontoloveRL(y1)

SymbolfrLrIyLsIyIrAssSxSaf1rL1rA1psPyPa1f2rI2xLsI2xIrA2a2Value2/3651/36580/365102.510.51/365291201/3651/3650.5/36510142/36520/36510911/3655

Description

Kathe’sforgettingcoefficient

Kathe’sreactioncoefficienttoJim’sloveKathe’s-to-JulesmaximuminsecurenessSensitivityofKathe’sreactiontoJules’loveKathe’s-to-JulesinsecurenessthresholdSensitivityofKathe’s-to-JulesinsecurenessKathe’sreactioncoefficienttoappealKathe’smaximumsynergismKathe’ssynergismthresholdSensitivityofKathe’ssynergismKathe’sappeal

Jules’forgettingcoefficient

Jules’reactioncoefficienttoloveJules’reactioncoefficienttoappealJules’maximumplatonicityJules’platonicitythresholdSensitivityofJules’platonicityJules’appeal

Jim’sforgettingcoefficientJim’smaximuminsecureness

SensitivityofJim’sreactiontoloveJim’sinsecurenessthresholdSensitivityofJim’sinsecurenessJim’sreactioncoefficienttoappealJim’sappeal

ReactiontoappealS(x)

Jules

AppealForgetting

ReactiontoloveReactiontoappealP(y1)

Jim

AppealForgettingRL2(x2)

ReactiontoappealAppeal

anddiffersfromtheensembleofthetwoindependentsubmo-delsforthepresenceofthetwosmallcouplingparameterseandd(seeTablesIandIIfortheanalyticalexpressionsandthereferencevaluesoftheotherparameters).

IV.RESULTS

A.Validationofthemodel

(i)

(ii)(iii)(iv)

Inthetwentyyearsofconcern,Kathechangespartnerseventimes,alternatingbetweenJulesandJim;

thechronologyofthepartnerchangesiswelldocu-mentedbyRoch󰀂e;

duringthefirstyearsKatheismoreattractedbyJules(shemarrieshim);

attheverybeginningofthestory,KatheismoreattractedbyJim,whomissesastrategicdate:󰀂,thingsmightIfKateandJimhadmetatthecafe

haveturnedoutverydifferently(p.80)

WenowvalidateourmodelofJulesetJimagainstthefollowingquantitative/qualitativefeatureswehaveidentifiedinthenovel:

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-7F.DercoleandS.RinaldiChaos24,023134(2014)

(v)

Jim’supsanddownsaremorerelevantthanthoseofJules:

“Jimwaseasyforhertotake,buthardtokeep.Jim’slovedropstozerowhenKate’sdoes,andshootsuptoahundredwithhers.Ineverreachedtheirzeroortheirhundred”(p.231)

(vi)

ThedropsininterestofKatheforJulesanticipatethoseofJulesforKathe:

ThedangerwasthatKatewouldleave.Shehaddoneitoncealready…andithadlookedasifshedidn’tmeantoreturn…Shewasfullofstressagain,Julescouldfeelthatshewasworkingupforsomething(p.89)

(vii)

ThedropsininterestofJimforKatheanticipatethoseofKatheforJim:

HehimselfwasincapableoflivingformonthsatatimeinclosecontactwithKate,italwaysbroughthimintoastateofexhaustionandinvoluntaryrecoilwhichwasthecauseoftheirdisasters(p.189)

Wekeepallparameters(excepteandd)atthevaluesofTableIIandwefirstlookforpairs(e,d)forwhichfeature(i)isreproducedbythemodel.Forthiswefixadensegridinthe(e,d)planeandwesystematicallysimulateourmodelforeachpointofthegrid,alwaysstartingfromthestateofindiffer-ence—sinceJulesandJimaretogetherwhentheyareintroducedtoKathe—andstoppingthesimulationafter20years.Thepairs(e,d)intheovershadedregioninFig.4arethoseforwhichthemodelpredictssevenchangesofpartner—sevenchangesofsignofKathe’sunbalancex1–x2aftershemarriesJules.

Andfortheparticularvaluesofeanddcorrespondingtothewhitedotinthefigure,thepredictedchronologyofthepartnerchangesisinbestagreementwith(ii).Kathe’sunbal-anceisgraphedinFig.5(bottom-left)andthecorrelationbetweentheseveninstantssuggestedbythemodelandthoseindicatedbyRoch󰀂eis0.97!(Fig.5,bottom-right).

WethencomparethemodelpredictionsofFig.5withfeatures(iii)–(vii).Feature(iii)iswellpredictedbecausex1>x2inthefirstyearsofthestory(seeKathe’sunbalance).Feature(iv)isalsopredicted,evenifnotvisibleatthescaleofthefigure.Infact,Jules’appealislowerthanthatofJim(a1Finally,tofullyvalidateourmodel,wehaveascertainedtherobustnessofourresultswithrespecttoperturbationsofallparameters.Thisismandatoryinacontextwheremostparametersdescribequalitative,ratherthanquantitative,characterialaspects.Forthiswehavefirstcheckedthatfea-tures(i)–(vii)aresatisfactorilyreproducedforallpairs(e,d)

FIG.4.ThelargestLyapunovexponentofthemodeltrajectorystartingfromx1(0)¼x2(0)¼y1(0)¼y2(0)¼0(computationbasedonthediscreteQRstandardalgorithm19andcheckedtobeconsistentwithothernonnegativeinitialconditions).Theexponentispositive(red)forchaoticattractors;zero(yellow)forquasi-periodicattractorsandbifurcatingcycles;negative(green)forstablecycles.For(e,d)intheovershadedregionthemodelpre-dictsthatKathechangespartnerseventimesin20years(seeFig.5,bottom).

intheovershadedregionofFig.4.Then,wehavesystemati-callysimulatedourmodelbyperturbing(upto10%)thepa-rametersoftheKathe-JulesandKathe-Jimsubmodels,andwehavecheckedthatitwasalwayspossibletofitfeatures(i)–(vii)withsmallvaluesofthecouplingparameterseandd.Thereadercanverifytherobustnessofourresultsbyusingtheonlinesimulator(seesupplementarymaterial22),whereallmodelparameterscanbesignificantlychanged.

B.Supportoftheconjecture

Tosupportourconjecture,weneedtoshowthat,forrea-sonableparametersettings,thetrajectoryofourmodelorigi-natingatthestateofindifferenceconvergestoachaoticattractorandthattheassociatedunpredictabilityisatworkinthefirst20years.

Focusingonourvalidatedparametersetting(TableIIand(e,d)atthewhitedotinFig.4),weobtainthechaoticattractordepictedinFig.6forwhichweestimateaLyapunovexponentof0.07yr–1.Thecharacteristictimeofdivergenceofnearbytrajectoriesafterwhichpredictionsbecomeimpracticable(theinverseoftheLyapunovexpo-nent17)ishenceabout15yr.Moreover,fromFig.5,weseethattheattractorisreachedonlyafewyearsafterthebegin-ningofthelovestory,sothatwecanconcludethatunpre-dictabilitycanbefeltbeforetheendofthestory.

TheLyapunovexponenthasbeencomputedforallpairs(e,d)consideredinFig.4(seethecolor-code),andtheresultisthetypicalbifurcationdiagramexpectedforweaklycoupledoscillators.Forextremelyweakcoupling,themodelattractorisatorus(seetheyellowregionclosetoe¼d¼0).Then,forlargercoupling,thetwooscillatorscansynchron-izeonacycleontorus,andthisoccursinthewell-known

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-8F.DercoleandS.RinaldiChaos24,023134(2014)

FIG.5.Thelovestorypredictedbythevalidatedmodel(eanddatthewhitedotinFig.4,otherparametersasinTableII).(Toppanels)TimeseriesofthefeelingsandtrajectoryprojectionsintheplanesoftheKathe-JulesandKathe-Jimsubmodels.(Bottompanels)Kathe’spreferenceandcomparisonwiththenovel.

Arnoldtongues(theverythingreenishregions).Increasingthecoupling,theattractorundergoesacomplexstructureofbifurcations—notdiscussedindetail—thatdescribetheclas-sicaltorus-destructionroutetochaos.ThegenericityofFig.4confirmsoncemoretherobustnessofourresults.

Notethatonlyaweakcouplingallowstosupporttheconjecture,sincethemodelattractorisperiodicifthecou-plingistoostrong,whereastheuncoupledensembleoftheKathe-JulesandKathe-Jimsubmodelsdescribesaperiodicorquasi-periodiclovestory.Interestingly,chaoscanbefoundfore¼0,butnotford¼0,suggestingthatthecomplaisanceofJulesandthejealousyofJimarethekeyelementstriggeringthecomplexityoftheirstory.

V.DISCUSSIONANDCONCLUSIONS

FIG.6.Projectionsofthechaoticattractorreachedbythevalidatedmodel(thelimitcyclesofFig.3aresuperimposedforcomparisonwiththeuncoupledensembleoftheKathe-JulesandKathe-Jimsubmodels).

Asiswellknown,evenfrompersonalexperience,senti-mentalrelationshipsareinfluencedbythesocialenviron-mentinwhichindividualslive.Itisthereforenotsurprisingifthefeelingscharacterizingromanticrelationshipsinturbu-lentenvironmentscannotbepredicted.Moresubtleandinterestingistheideadiscussedinthispaper:lovestoriescanbeunpredictableeveninconstantenvironments,i.e.,onthesolebasisofthecharactersinvolved.ThisideahasbeenconjecturedinRef.2andthensupportedinRef.6throughana€ıvemathematicalmodelofahypotheticallovestory.

Herewehaveprovedtheconjecturebymakingrefer-encetotherealandwelldocumentedtriangularlovestory,involvingKathe,Jules,andJim,describedbyRoch󰀂einhis

161953novelJulesetJim.

Therearefiveaspectsofourstudythatareworthtobementionedbecauseofgeneralinterest.Thefirstconcernsthemethodofanalysis,whichisgeneralandconsistentwithstand-ardpsychoanalysis.First,themainpsycho-physicaltraitsoftheindividualsinvolvedareidentified,inthiscasefromacarefulreadingofthenovel.Then,thesecharacteristicsareencapsu-latedinamathematicalmodel—theformalanalogueoftheverbaldescriptionsmoretraditionallyusedinpsychology—whichisvalidatedbycomparingthemodelpredictionswiththemostrelevantfeaturesofthelovestory.Theresultisverysatis-factory:forsuitablevaluesoftheparameters,thematchingbetweenthestorypredictedbythemodelandthestory

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

023134-9F.DercoleandS.RinaldiChaos24,023134(2014)

describedbyRoch󰀂egoesbeyondwhatistypicallyexpectedinthecontextofsocialdynamics.ThisallowedustoprovetheconjecturebysimplycheckingthatthevalidatedmodelhasapositiveLyapunovexponent.Specifically,weshowthatboththetimeneededtoreachthestrangeattractorfromtheinitialstateofindifferenceandthecharacteristictimeofdivergenceofnearbytrajectoriesintheattractoraresignificantlysmallerthanthelengthofthelovestory(20years),sothatitispossibletoinferthatKathe,Jules,andJimhadhighchancestofeeltheunpredictabilityoftheirstory.

Asasecondinterestingaspect,wefoundthatunpredict-abilityistriggeredbyminorandalmosthiddentraitsofthethreecharacters:Katheforgetsslightlymorequicklytheloversheislessinvolvedwith,whileJulesandJimareslightlycomplaisantandjealous.Inthegeneralcontextofsystemstheory,thisconfirmsthatsmallparameterscanplaystrategicrolesinpromotingcomplexdynamics,whileinthespecificcontextofinterpersonalrelationshipsthisjustifiestheinterestthatpsychoanalystshaveinapparentlyminordetails.

Athirdaspectweliketomentionisconcernedwiththestructureofourmodel.Itiscomposedoftwooscillators(thesubmodelsKathe-JulesandKathe-Jim),whichinterferethroughweakcouplingmechanisms.Thisiscommoninseveralfieldsofscience,wheresystemscanbeviewedasinterconnectedoscillatingunits.Forexample,inecologyeachconsumerpopulationhasafavoriteresourcebutcanalsofeedonasecondaryspecies,which,inturn,canbethefavoriteresourceforanotherconsumer.Thus,complexfoodwebsarenaturallydescribedasconsumer-resourceunitsinterconnectedthroughthefeedingpreferences.Amodeloftwoconsumerscompetingfortworesourceshasthereforethesamestructurethanthemodelconsideredinthispaper.Thisisofgreatpotentialinterest,becausesomeofthegeneralresultsobtainedinmathematicalecology,20and/orresultsinthetheoryofcoupledoscillators,21couldguidethemodelingofcomplexinterpersonalrelationships.

Thefourthaspecttoberemarkedisthatalovestorycanbechaoticwithoutnecessarilyinvolvingthreeindividuals,asinthecasestudiedinthispaper.Indeed,sentimentalchaoscanbepresentinthemorestandardsituationinvolvingtwoindividuals,providedatleastoneischaracterized,inadditiontotheromanticsphere,byasecondimportantemotionalcompartment.Thisistypicalofindividualsinvolvedincreativeprofessions,whereinspiration,satisfaction,andself-esteemcaninterferewiththeromanticsphere.Andsinceamodelofthissituationwouldbeatleastthree-dimensional,instabilities(chaos)caneasilyarise.Forexample,thedesta-bilizingeffectofinspirationhasbeenpointedoutintheromanticrelationshipbetweenPetrarch,thefamouspoetofthe13thcentury,andhismistress.12Finally,thelastgeneralmessageweliketoextractfromourstudyisthefactthatamathematicalstudycanbeusedtohighlightthegeniusofanartist—inthiscaseFranc¸oisTruffaut,oneoftheprominentdirectorsofthe“NouvelleVague”—whofeaturedRoch󰀂e’snovelinhismostimportantfilm,JulesetJim,madein1961afterdiscussingtheideawithRoch󰀂e.JeanneMoreauandOskarWerner,alreadywellknown,playedKatheandJules,whileHenriSerre,selectedbecauseofacertainresemblancetoRoch󰀂e,playedJim.

Truffautomitsmanyminorcharactersofthenovel,thuscon-sideringanalmoststeadysocialenvironment,butsuccess-fullyreproducesthefeelingsbetweenHelenGrundandthe

twofriends.IndeedHelenGrund,theonlyoneofthethreewhocouldwatchthefilmafterHesselandRoch󰀂epassedaway,wrotetoTruffaut:

Butwhatdispositioninyou,whataffinitycouldhaveenlightenedyoutothepointofrecreating—inspiteoftheoddinevitabledeviationandcompromise—theessentialqualityofourintimateemotions?

Truffautmagistrallyadds,hereandthere,explicitele-mentspointingtothefactthatlovestoriescanbeturbulentbecauseofattractingandrepellingforces.Sincethediscus-sionoftheseoriginalelementswouldbringustoofar,weonlymentionherethemostexplicitreferencetoattractionandrepulsion,Letourbillondelavie(thevortexoflife),thesoundtracksungbyJeanneMoreau.Thissongisundoubt-edlyabeautifulhymntochaos,characterizedbyrecurrentphasesofconvergenceanddivergence.FurtherdetailsonthegeniusofFranc¸oisTruffautinusingthemetaphorofstretch-ingandfoldingwillbepublishedelsewhere.

ACKNOWLEDGMENTS

TheauthorsaregratefultoJos󰀂e-ManuelRey,whosecommentssignificantlyimprovedthepresentation.

G.Levinger,J.Exp.Soc.Psychol.16,510(1980).S.H.Strogatz,Math.Mag.61,35(1988).3S.RinaldiandA.Gragnani,inTheComplexMattersofMind,editedbyF.Orsucci(WorldScientific,Singapore,1998),pp.87–104.4J.M.Gottman,J.D.Murray,C.Swanson,R.Tyson,andK.Swanson,TheMathematicsofMarriage:DynamicNonlinearModels(MITPress,Cambridge,MA,2002).5H.D.I.Abarbanel,AnalysisofObservedChaoticData(Springer-Verlag,NewYork,1996).6J.C.Sprott,NonlinearDynam.Psychol.LifeSci.8,303(2004).7D.H.FelmleeandD.F.Greenberg,J.Math.Sociol.23,155(1999).8X.LiaoandJ.Ran,Chaos,SolitonsFractals31,853(2007).9J.Wauer,D.Schwarzer,G.Q.Cai,andY.K.Lin,Appl.Math.Comput.188,1535(2007).10S.Rinaldi,F.DellaRossa,andF.Dercole,Int.J.BifurcationChaos20,2443(2010).11J.-M.Rey,PLoSOne5,e9881(2010).12S.Rinaldi,SIAMJ.Appl.Math.58,1205(1998).13S.Rinaldi,F.DellaRossa,andP.Landi,PhysicaA392,3231(2013).14S.Rinaldi,P.Landi,andF.DellaRossa,Int.J.BifurcationChaos23,1330038(2013).15S.Rinaldi,F.DellaRossa,andP.Landi,NonlinearDynam.Psychol.LifeSci.18,199(2014).16󰀂H.-P.Roch󰀂e,JulesetJim(EditionsGallimard,Paris,1953)(inFrench;Englishtrans.byP.Evans,MarionBoyars,1998).17S.H.Strogatz,NonlinearDynamicsandChaos(Addison-Wesley,Reading,MA,1994).18J.A.Simpson,S.W.Gangestad,andM.Lerma,J.Pers.Soc.Psychol.59,1192(1990).19L.Dieci,R.D.Russell,andE.S.V.Vleck,SIAMJ.Numer.Anal.34,402(1997).20EncyclopediaofTheoreticalEcology,editedbyA.HastingsandL.Gross(UniversityofCaliforniaPress,Berkeley,2012).21A.Pikovsky,M.Rosenblum,andJ.Kurths,Synchronization:AUniversalConceptinNonlinearSciences(CambridgeUniversityPress,Cambridge,UK,2001).22Seesupplementarymaterialathttp://dx.doi.org/10.1063/1.4882685fortheonlinesimulatorandcreditsandquotes.

21 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

110.65.147.240 On: Tue, 24 Nov 2015 00:31:15

因篇幅问题不能全部显示,请点此查看更多更全内容