教学目标
1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础. 2.掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式.
教学重、难点
重点:应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法. 难点:灵活应用不等式的基本性质.
教学过程
一、引入:
不等关系是自然界中存在着的基本数学关系.《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子.要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决.而且,不等式在数学研究中也起着相当重要的作用.
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等.
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的.还可从引言中实际问题出发,说明本章知识的地位和作用.
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?
分析:起初的糖水浓度为可.怎么证呢?
二、探究不等式的基本性质:
1、实数的运算性质与大小顺序的关系:
数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:
bbmbmb,加入m克糖后的糖水浓度为,只要证>即aamamaabab0 abab0
abab0
上面的符号“”表示“等价于”,即可以互相推出.
得出结论:要比较两个实数的大小,只要考察它们的差与0的大小即可. 例1 比较(x3)(x7)和(x4)(x6)的大小. 2、探究不等式的基本性质: