教学目标:
1.能根据实际问题列出函数关系式、
2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。
3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
重点难点:
根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。
教学过程:
一、复习旧知
1.通过复习以前学过的一次函数,(y=kx+b)和反比例函数(y=k/x,k≠0)的解释式和图像特征来引出二次函数的解释式和图像。
㈠一次函数(y=kx+b,k≠0)的图像特征是一条直线,
⑵正比例函数(y=kx,k≠0)是一次函数的一种特殊情况,是一条过坐标原点的直线
⑶反比例函数(y=k/x,k≠0)的图像是双曲线
二、生活中的范例
例1:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子 问:
(1)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?
(2)如果果园橙子的总产量为y(个),那么请你写出y与x之间的关系式
解:(1)果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量
(100+x)(600-5x)
(2)y与x 的函数式为y=(100+x)(600-5x)
=-5x2+100x+60000
例2:用总长为60m的篱笆围成矩形场地,场地面积S(m2)与矩形一边长a(m)之间的关系是什么?
解:S=a(60/2-a)=a(30-a)
=30a-a2= -a2+30a
三,由观察这些例题的函数式y=-5x2+100x+60000。S=-a2+30a的特征得出二次函数的一般定义:
定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0的函数叫做x的二次函数
温馨提示:
(1)关于自变量的代数式一定是二次整式,a,b,c为常数,且a≠0.
(2)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项
四,小试牛刀
1.下列函数中,哪些是二次函数?
(1)y=3(x-1)2+1; (2)y=x+1/X
(3) s=3-2t2 (4)y=1/x2-x
(5)y=(x+3)2-x2 (6)v=10πr2
(7) y= x2+x3+25 (8)y=22+2x
五,问题在探究
1,在种树问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
解:在种树问题中,y与x之间的关系式为:
y=-5x2+100x+60000
不妨制作表格对x不同取值求出数据作出猜测:
X - 5 6 7 8 9 10 11 12 13 14 15 -
Y - 60375 60420
60495
60500
60495
60480
60455 60420 60375
-
你发现了吗
① 当x在0~10时随着x值增加,橙子总产量y也不断增加
② 当x10时随着x值不断增加,橙子总产量y却不断减小
所以,当x=10时,橙子总产量y取得最大值为60500
六,扩展
定义中应该注意的几个问题:
1.定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数.
y=ax2+bx+c(a,b,c是常数,a≠0)的几种不同表示形式:
(1)y=ax2(a≠0,b=0,c=0,).
(2)y=ax2+c(a≠0,b=0,c≠0).
(3)y=ax2+bx(a≠0,b≠0,c=0).
2.定义的实质是:ax2+bx+c是整式,自变量x的最高次数是二次,自变量x的取值范围是全体实数
七,小结
1.通过本节课的学习,你学到了什么知识?存在哪些困惑?
2.谈谈你的收获和体会
八,作业
(1)P36 习题2.1 1,2,3
(2)查找资料编一道有关二次函数定义的小题,小组内讨论解答
以上即是数学网为大家整理的苏科版初三下册数学教学计划:第6章第1节二次函数,大家还满意吗?希望对大家有所帮助!
因篇幅问题不能全部显示,请点此查看更多更全内容