意大利服阀的区别及原理与比例阀相比,它重要的特征就是当阀芯处于中位时,阀口是零开口的(俄口的遮盖量几乎为零),这意味着伺服比例阀的控制特性具有死区为零的特点,特别适用于作为闭环系统的控制元件。它可以按给定的输入电压或电流信号连续地按比例地远距离地控制流体的方向、压力和流量。采用电液比例控制阀可以提高系统的自动化程度和精度,又简化了系统。比例闵的工作虽用伺服阀可完成,但后者精度高、价格贵,对油液清洁度要求更高。比例闵主要结构与普通阀差别不大,只是比例阀均由比例电磁铁驱动(一种电;-;机械转换器)。要注意到比例阀,伺服阀和伺服比例阀是三种不同类型的阀。意大利ATOS 比例伺服阀的区别及原理:
分为:比例压力阀、比例流量阀和比例方向阀,电液比例伺服阀又叫电液伺服比例阀,来源于比例技术与伺服技术的结合,一种是采用比例电磁铁作为电-机转换器,将传统电液比例阀的功率滑阀改进成伺服阀的阀芯、阀套结构:一种是将电液伺服阀的滑阀的阀套结构去掉,机械反馈改为电反馈。液控伺服阀主要是指电液伺服阀,它在接受电气模拟信号后,相应输出调制的流量和压力。它既是电液转换元件,也是功率放大元件,它能够将小功率的微弱电气输入信号转换为大功率的液压能(流量和压力)输出。伺服阀和比例阀,都是通过调节输入的电信号模拟量,从而无极调节液压阀的输出量,例如压力,流量,方向。(伺服阀也有脉宽调制的输入方式)。但这两种阀的结构完全不同。伺服阀依靠调节电信号,控制力矩马达的动作,使衔铁产生偏转,带动前置阀动作,前置阀的控制油进入主阀,推动阀芯动作。比例阀是调节电信号,使衔铁产生位移,带动先导阀芯动作,产生的控制油再去推动主阀芯伺服阀的结构非常复杂,前置阀有喷嘴挡板式,有射流管式,主阀芯还带有位移反馈。比例阀的结构简单的多,先导阀就是一个节流型的阀芯,也可以装阀芯位移。
淤积失效:当阀静止并有压力时在阀芯与阀套之间出现淤积。比半径间隙大的一些颗粒被该环形间隙滤掉。随着污染物的聚积,它们使始动摩擦和静摩擦加大。响应时间拖长;该阀可能变得不稳定并有一个很宽的滞环。在严重的场合,该阀可能变得卡涩而无法操作。(加大阀的正遮盖则提高淤积和卡涩的概率。)部分堵塞的LCF会使得阀响应变的迟钝,系统性能下降(即速度迟缓、定位精度差); 在LCF严重堵塞的情下,由于缺乏驱动力该阀芯将在阀套中卡住,伺服阀无法操作。
卡涩失效:阀芯阀套环形缝隙的不均匀淤积会造成严重的侧载荷,侧载荷使得在阀芯与阀套的金属接触表面之间出现微观粘附(冷压接)。中等卡紧引起始动力加大,造成不平稳的阀运动。严重卡涩在某些阀设计中可能引起卡紧失效。
退化失效:退化失效可能是磨粒磨损、腐蚀、汽蚀、混气、冲刷磨损或表面疲劳的结果。每一种都使系统元件中内泄漏增加,这降低其效率或精度,但这些变化一开始很难被察觉到。最终的结果,是造成突发的不可修复性失效。最容易引起磨损的颗粒是间隙尺寸的颗粒,它们会落入元件里运动表面之间的关键间隙中。
油液降解造成的阀失效的模式
磷酸酯作为EH油在控制系统中的使用已经有将近40年的历史。然而它在有水的情况下却很容易降解。所以有效的油液调整必须是避免或切断油液降解链。油液降解的最坏影响是酸的形成并在严重情况下腐蚀重要的金属元件,同时影响抗燃油的电阻率等一系列指标。水与磷酸酯抗燃油水解产生酸,而酸同时又促进了水解过程。另外酸值会影响电阻率及氯离子含量等油质指标。在监测的关键指标中,电阻率降低,氯离子含量过高又会造成电化学腐蚀,对伺服阀控制泄漏量的关键棱边造成无法修复损伤(只能更换阀芯阀套组件),影响伺服阀控制的精确度和灵敏度。酸会与油质中的金属质杂质反应生成不溶性的胶质金属盐以及一些可溶性金属盐,金属盐的存在会进一步加剧电阻率及氯离子含量的变化。另不溶性胶质盐的存在,使得伺服阀的滤芯、阀芯阀套很容易堵塞。