初中生的思维处于由具体向抽象过度的阶段,加强直观教学,可以帮助学生更好地认识和理解知识。下面小编给大家整理了关于如何培养孩子的数学抽象思维,希望对你有帮助!
1如何培养孩子的数学抽象思维
重视形象思维
首先在教学中教师要尽可能地运用形象。形象思维能促进学生的心理活动更加丰富,有助于他们更深刻地认识事物的本质和规律。研究表明,富有创造性的学生形象思维一般能达到较高水平。“火车过桥”问题是学生很难理解的一类行程问题,记得在教学时我信手拈来,很自然恰当地运用了教室里现在的物品进行操作演示:把讲台当做桥,一把米尺当成火车,来演示火车过桥,我先让学生理解“过桥”并进行演示,通过演示明确“车头上桥到车尾离桥”才叫“火车过桥”,接着再弄清火车过桥所行的路程,通过演示学生很容易明白火车过桥所行的路程就是桥长加车身的长度。直观可以让抽象的语言文字变成看得见的形象,可以降低学生思维的难度,可以帮助学生很好地理解知识、建构知识。
其次还应指导学生养成用直观化策略解决问题的习惯。如小明和小军去买同一本书,用小明的钱买这本书缺1.6元,用小军的钱买这本书缺1.8元,如果把两人的钱合并在一起买一本书则多2元,这本书单价是多少元?学生如果采用画图策略,那么问题便可迎刃而解。
引导学生学会逐步的抽象
首先教师在教学中要注重培养学生的抽象思维能力。抽象只有摆脱具体形象,才能使思维用算法化的方式得出新的结果。如一年级学习“9加几”的加法,当学生有一圈十、凑十的实物操作基础后,教师必须引导学生回到算式,抽象出算法,要算9加几的加法,先要想9加几等于10,再把第二个加数进行分解,最后再进行9+1+()的计算。
其次抽象除了可以使思维概括、简约、深刻以外,还有发现真理的功能。所以教师还要指导学生用抽象的方法解决问题。在学习中可以表现为由原型匹型到抽象提升,如六年级有这样一类题:“一批布,做上衣可做20件,做裤子可做30条,这批布可做多少套衣服?(一套衣服是一件上衣和一条裤子)”“体育委员为班组购买文体用品。他带的钱正好可以买15副羽毛球拍或24副乒乓球拍。如果他已经买了10副羽毛球拍,那么剩下的钱还可买多少副乒乓球拍?”这些题都可以抽象成工程问题,通过抽象的方式解决问题。
2数学思维的培养
加强直观教学
初中生的思维处于由具体向抽象过度的阶段,加强直观教学,可以帮助学生更好地认识和理解知识。因此,要求在重点、难点讲解阶段,教师的教学要做到由浅入深,由易到难,由具体到抽象。教学时,既可以让学生动手操作,也可以引导学生展开想象的翅膀,还可以利用多媒体展示,使空间的、难以想象的内容具体化、形象化。
例如:讲授比较线段的大小时,先让学生比较两位同学的身高,从观察判断、工具测量、并齐对比的三种方法中,感受“并齐对比”比较法简单准确,从而引出教材中用“叠合法”比较线段的长短。讲授圆锥体的侧面是什么图形时,让学生先自做模型,然后展开,从而得知它是扇形。它的底面周长是这个扇形的弧长,母线是它的半径,这样就学生就容易理解。再如:讲直线概念时,在黑板上画一条直线,引导学生想象:这条直线可延长到哪里啊?透过教室的墙壁,越过田野,穿过高山,跨过大河,横渡汪洋大海,越出地球,伸向宇宙,甚至无穷无尽的远方。这样就使他们懂得直线可以无限延长,学生在欢快的遐想中形成了正确的空间观念。
根据教材的知识点,培养学生的语言表达能力
学生的语言表达能力的训练,不仅仅是语文学科的教学任务,数学课也要按照教材的知识点,对学生进行语言表达能力的训练,这样的教学,有利于培养学生分析问题和解决问题的能力。如在教学人教版国标实验教材一年级下册“位置”这一内容时,我先让学生观察课桌上学习用品,用语言表示上下的物品后,再让学生观察主题图,让学生用清楚明了的语言准确叙述,谁在谁的上面,谁在谁的下面。
然后引导学生利用教室内的资源,分别用“上、下,前、后,左、右”来准确叙述,一个学生在用这些方位词说话时,这样说道:“老师在讲台上面,我们在讲台下面。我的前面是王艳,后面是李方,左面是赵伟,右面是张航。”这样的训练,不但培养了学生辨别“位置”的能力,还训练了学生的语言表达能力,为今后的学习和发展奠定了坚实的基础。
3数学思维的培养
顺水推舟,延伸思维
在课堂教学中,由于每个学生都是一个不同的个体,所以有许多学情是无法预设的。而这些预设之外的学情却可以成为教学中宝贵的隐性资源。如果顺着学生的思路,教师作适当地设疑点拨,往往也可以促使学生的思维走向深入。
例如,教学“认识平行”一课,在学生尝试画平行线的过程中教师发现,有学生利用了三角板的斜边画了一条直线,然后用直尺去靠三角板斜边左边一个顶点,发现有点不对,又不知问题出在哪(见图1)。这时教师及时捕捉:把这一画法放在实物投影上让学生们来观察这一画法有什么问题。学生说应该用三角板的一条直角边画直线,直尺紧靠另一直角边,而他没用直角边。这时,教师顺势引导学生思考,那么如果就用这条斜边画平行线,直尺只要怎么靠同样也能画出平行线来?直尺在画平行线的过程中主要起什么作用?学生的思维自然又深入一层,通过讨论与尝试实践,学生们高兴地发现只要将直尺斜过来靠在直角边上同样也能画出平行线,关键只要保证直尺紧靠三角板一边,保证三角板另一边能平移,就能正确画出平行线(见图2)。从而进一步理解了画平行线的方法和原理。
巧用《几何画板》自主探究,培养学生的动态思维
“动态”是《几何画板》的最大特点,也是其魅力之所在。这在数学上的意义非同寻常,它满足了数学教学之需,弥补了传统教学手段之不足。黑板上的图形是永远静止不动的,它掩盖了几何实质。在传统数学教学中,用圆规、三角板绘制的几何图形是静态的。要认识它的关系需要教师的语言描述和学生的理解和想像能力。
《几何画板》画出的图形与在黑板上画出的图形不同,它具有动态特征。教师可以在“动”中教,学生可以在“动”中学。有些教学内容在传统教学中显得枯燥和乏昧,引入《几何画板》后,许多内容变静为动,学生在“动”中求知,从而激发了学生的学习兴趣与学习积极性。利用《几何画板》的动态性和形象性。可以给学生创造一个实际“操作”几何图形的环境。学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。
4数学思维的培养
重视形象思维,为抽象思维打好基础。
首先,在教学中教师要尽可能地运用形象。形象思维能促进学生的心理活动更加丰富,有助于他们更深刻地认识事物的本质和规律。研究表明,富有创造性的学生形象思维一般能达到较高水平。"动车过桥"问题是学生很难理解的一类行程问题,记得在教学时我信手拈来,很自然恰当地运用了教室里现在的物品进行操作演示:把讲台当做桥,一把米尺当成动车,来演示动车过桥,我先让学生理解"过桥"并进行演示,通过演示明确"车头上桥到车尾离桥"才叫"动车过桥",接着再弄清动车过桥所行的路程,通过演示学生很容易明白动车过桥所行的路程就是桥长加车身的长度。直观可以让抽象的语言文字变成看得见的形象,可以降低学生思维的难度,可以帮助学生很好地理解知识、建构知识。
其次,还应指导学生养成用直观化策略解决问题的习惯。如小明和小军去买同一本书,用小明的钱买这本书缺1.4元,用小军的钱买这本书缺1.6元,如果把两人的钱合并在一起买一本书则多2元,这本书单价是多少元?学生如果采用画图策略,那么问题便可迎刃而解。
动手实践,向抽象思维活动发展
低年级学生的思维以形象思维为主,到了高年级就逐步向抽象思维活动发展,这对于概念的形成、公式的提出、科学理论体系的建立等具有重要作用。所以,可根据学生的年龄特点,年级的增高,积极的引导学生由形象思维向抽象思维活动过渡。由于小学生年龄小,空间想象力差,尤其是逻辑推理能力较低,所以说,抽象逻辑思维能力的培养,是小学数学教学中的难点之一。为此,在教学中尽量抓住每一个机会和场合,来诱导学生进行抽象思维活动。
如,在"圆的周长"部分的教学中,首先让学生制作一些硬纸板圆,然后带领学生分别测量出每个圆的周长和直径是多少,再算一下周长是各自圆直径的多少倍,学生纷纷动手、动脑进行计算,结果证明圆的周长是直径的3倍多一点。在此基础上再去学习圆周率,学习圆周率和近似值,学生印象深。这样在大量感性材料的基础上进行抽象思维活动,避免了让学生机械去死记硬背的灌输式教学方法,从而提高了教学质量。