结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。非结构化数据是指信息没有一个预先定义好的数据模型或者没有以一个预先定义的方式来组织。非结构化数据一般指大家文字型数据。
结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。
大多数人都熟悉结构化数据的工作原理。结构化数据,可以从名称中看出,是高度组织和整齐格式化的数据。它是可以放入表格和电子表格中的数据类型。它可能不是人们最容易找到的数据类型,但与非结构化数据相比,无疑是两者中人们更容易使用的数据类型。另一方面,计算机可以轻松地搜索它。
结构化数据也被成为定量数据,是能够用数据或统一的结构加以表示的信息,如数字、符号。在项目中,保存和管理这些的数据一般为关系数据库,当使用结构化查询语言或SQL时,计算机程序很容易搜索这些术语。结构化数据具有的明确的关系使得这些数据运用起来十分方便,不过在商业上的可挖掘价值方面就比较差。
典型的结构化数据包括:信用卡号码、日期、财务金额、电话号码、地址、产品名称等。如mysql数据库中的数据、csv文件
非结构化数据是指信息没有一个预先定义好的数据模型或者没有以一个预先定义的方式来组织。非结构化数据一般指大家文字型数据,但是数据中有很多诸如时间,数字等的信息。相对于传统的在数据库中或者标记好的文件,由于他们的非特征性和歧义性,会更难理解。包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
非结构化数据本质上是结构化数据之外的一切数据。它不符合任何预定义的模型,因此它存储在非关系数据库中,并使用NoSQL进行查询。它可能是文本的或非文本的,也可能是人为的或机器生成的。简单的说,非结构化数据就是字段可变的的数据。
非结构化数据不是那么容易组织或格式化的。收集,处理和分析非结构化数据也是一项重大挑战。这产生了一些问题,因为非结构化数据构成了网络上绝大多数可用数据,并且它每年都在增长。随着更多信息在网络上可用,并且大部分信息都是非结构化的,找到使用它的方法已成为许多企业的重要战略。更传统的数据分析工具和方法还不足以完成工作
暂无回复内容
请 登录 或者 注册 后回复。